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APPLIED TECHNCLOGY LABORA" Y POSITION STATEMENT

The Advancing Blade Concept {ABC) rotor system was conceived as a means to alleviate classical retreating blade
stall limitations and permit rotary wing flight throughout an expanded flight envelope. Unlike earlier g=neration com- :
pound helicopters, which used wings to unload the rotor at high speeds, an ABC helicopter retains rotor lift under

high speed/high altitude conditions and therefore does not need a wing.

This report addresses the research, development, and test effarts involved in demonstrating the feasibility of the ABC
rotor system. It covers contractual work spanning 8-1/2 years during which time the ABC rotor evolved through ;
design, small scale wind tunnel tests, miscellaneous laboratory and ground tests, incarporation into the XH-59A demon-

strator aircraft, an finally, test of that aircraft. The primary emphasis is on flight test results — as a puis helicopter

up to level flight speeds of 156 knots true airspeed {KIAS) and with auxiliary propulsicn up to level flight speeds of

238 KTAS. R

g

Test results have been igvorable and have verified the feasibility of this type of rotor system. Many of the original
concerns relative to handling qualities and rotor stability have been laid 10 rest. Some insight has been gained into
the magnitude of the design compromises needed to accommodate both conventional and high speed flight in one
rotary winq aircraft.

- A oroduction ABC helicopter would require the application of composite materials technology and rotor redesign 1o

B reduce the rotor weight fraction. For missions requiring speeds above approximately 160 knots, an integrated
lift/thrust propuision system would be used to selectively power the rotors for lift or power the fans (or propelier)
for thrust. Some type of vibration attenuation device would 2iso be needed.

Results of this program will form a data base from which subsequent ABC designs can evolve. Technical areas
requiring further R&D effort to exploit the potential of the ABC rotor have been identified.

Flight testing of the XH-59A under Navy contract DAAKET-80-C-0021 is continuing. The speed envelope has been
expanded to 263 KTAS and the aircraft has been flow.: to a density altitude of approximately 25,000 feet.

M:. Harvey R. Young and Mr. John A. Macrino from the Aeronautical Systems Division were the project engineers
for this program, and Mr. Duane R. Simon was the project test pilot.

DISCLAIMERS

The findings in this report are not tc be construed as an official Department of the Arhy position unless so
designated by other authorized documents.

When Government drawings, specificatiuns, or other data are used for any purpose other than in connaction
with a definitely related Government procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever: and the fact that the Government may have formulated, furnished.
or in any way supplied the said drawings, specifications, or other data is not to be regarded kv implication or
otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or
permission, to manufecture, use, or sell any patented invention that may in any way be related thereto,

Trade names cited in this report do not constitute an official endorsement or approval of the use of such
commercial hardware or software.
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PREFACE

This report describes the results of a flight test program
conducted with the Advancing Blade Concept (ABC) aircraft,
serial number 21942. Tests were conducted in both the pure
helicopter ard the auxiliary ropulsion configuration.
Flights were performed by the Sikorsky Aircraft Division of
United Technologies Corporation under Contracts DAAJ02-72-C-
0020 and DAAJ02-75-C-0009, with the Applied Technology Labora-
tory, U.S. Army Research and Technology Laboratories, Fort
Eustis, Virginia. Testing was conducted at the contractor's
flight test facilities in Stratford, Connecticut, and West
Palm Beach, Florida, and at Rentschler Field, East Hartford,
Connecticut. Prcgram Managers for the c¢ontractor were
Messrs. G. Stack, D. Jenney, D. Halley, and A. Linden.

Flight testing in the pure helicopter configuration commenced
on 21 July 1975 and was completed on 9 Marcn 1977. The air-
craft was modified with turbojets for auxiliary propulsion,
and flight testing in that configuration began on 6 April 1978
and continued through 31 May 1980. It was conducted under the

supervision of Messrs. W. Groth, A. Ruddell and R. McCutcheon.

The Sikorsky test pilots were Messrs. B. Graham, D. Wright,
J. Wright, C. Evans, and R. Holasek. Government evaluaticn
pilots were Messrs. D. Simon, Applied Technology Laboratory,
R. Gerdes, NASA Ames Research Center, and Maj. M. Blair and
Lt. Cmdr. T. MacDonald, Naval Air Test Center. Messrs.
H. Young, H. Murray, D. Simon, J. Whitman, D. Arents, and
J. Macrino were the Army Technical Representatives.

Funding for contract DAAJ02-72-C-0020 was provided by the U.S.
Army. Funding for contract DAAJ02-75~C-0009 was provided by
the U.S. Army, the U.S. Navy, and the National Aeronautics and
Space Administration (NASA). The U.S. Air Force supplied J-60
engines for auxiliary propulsion flight testing.
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INTRODUCTION

The Advancing Blade Concept (ABC)TM rotor system, with a pair
of counterrotating, c¢oaxial, very rigid hingeless rotors,
represents a significant departure from all predecessor heli-
copter rotor systems. [t derives its name from the fact that
the predominant lift load at high forward speeds 1s carried by
the advancing blades on both sides of the aircraft. Since the
retreating blades are not required to carry a significant
fraction of the total lift lcad at forward speed, the speed
and load factor limitations of ti.e conventional heliccpter due
to retreating plade stall are eliminated. Unlike a conven-
tional helicopter, zrotor 1lift capability 1s retained with
increasing speed, and speed capability is maintained at alti-
tude.

In addition to performance benefits, the ABC's unique coaxial
rigid rotors vrepresent a significant departure from past
practice in handling gualiities, acoustics, locads and dynamics.
As with other coaxial counterrotating rotors, torque cancella-
tion 1s provided, thereby eliminating the need for a tail
rotor and 1ts associated shafting and gearboxes.

Advancing Blade Concept development began in 1964. Extensive
analytical and experimental studies culminated in the test of
a 40~-foot~diameter rctor in the Ames 40-x-80-foot wind tunnel
in 1970 (Reference 1). The wind tunnel tests covered a speed
range of 80 to 180 knots and advance ratios of 0.21 to 0.91.
Test results confirmed the performance potential of the ARC
rotor system. In addition, the full-scale wind tunnel program
developed materials technology and fabrication techniques to
make construction of a demonstrator aircraft practical.

In December 1971 the U.S. Army awarded Sikorsky Ailircraft
Contract DAAJ02-72-C-0020 to design, fabricate, and fly the
XH-59A to demonstrate the performance, handling gualities, and
maneuver capabilities of the ABC rotor system. In August 1973
the first demonstrator aircraft, S/N 21941, was badly damaged
in a hard landing during low speed forward flight test. A
thorough accident investigation established that the incident
was not inherent to any basic flaw 1in the concept. In
November 1974 contract DAAJ(02-75-C-0009 was awarded to con-
tinue the flight test program with aircraft S$/N 21942. This
report documents the results of that contract.

1. FULL=-SCALE WIND TUNNEL INVESTIGATION OF THE ADVANCING
BLADE CONCEPT ROTOR SYSTEM, USAAVLABS Technical Report
71-25, Eustis Directorate, U.S. Army Alr Mobility R&D
Lab, Fort Eustis, Va, August 1971, AD 734338.
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Sixty-~six hours of helicopter mode flying have been completed
with the test envelope expanded to 156 KTAS in level flight
and 186 KTAS in a dive. Altitudes of 14,000 feet Were inves-
tigated.

Auxiliary propulsion flying was done in two phases. The
first phase involved testing with the two rotors mounted on
the aircraft to cross each other at the 90-degree azimuth

« 3 position. This testing included 24 hours and expanded the

- envelope toc 204 KTAS. The second phase of flight testing had
the rotors installed to cross each other at ¢ degree azimuth
position. This included 16 hours of flight tests and ex-
panded the envelope to 238 KTAS.
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DESIGN DESCRIPTION

The XH~55A Advancing Blade Concept demonstrator aircraft is
designed as a research aircraft to investigate the rotor
characteristics .n both helicopter and auxiliary propulsion

modes. Figure 1 shows the aircraft in the helicopter mode,
and the auxiliary propulsion configuration 1is shown in
Figure 2. Table 1 summarizes the general aircraft attri-
butes. Detailed design descriptions are presented 1in the

following sections.

TABLE 1. XH-59A AIRCRAFT ATTRIBUTES.

Alrcraft Length (rotor turning)....... 41 ft 6 in.
Fuselage Length....... ... 40 ft 10 in.
Main Landing Gear Tread............... 8 ft
Helght. ... . ittt tianennnn 12 ft
Rotor Diameter........cuoveeeernncennns 36 ft
Number of Rotors......... .. ... ..., 2
Blades per Rotor.......... oo 3
Rotor Separation...............coouun.- 30 in.
Blade Taper Ratio............ ..., 2:1
Blade Twist (nonlinear).............. =10 deg
Total Rotor Solidity (P€75)........... .127
* R
Precone Angle......... ... vimiiann.. 3 deg
Prelag Angle......... ... i iiiinenn. 1.4 deg
Shaft Tilt....ieiiiiirerennnennnnnnnnn 0 deg
Design Rotor Speed (helicopter........ 650 ft/sec
aux propulsion)... 450 ft/sec

Drive System Design Power............. 1500 hp,
Tail Surface - Horizontal............. 60 ftz

- Vertical............... 30 ft
Elevator - & of Horizontal Tail....... 25
Rudder - % of Vertical Tail........... 30
Power Plants - Lift................... (2) PT6-3

= Thrust................. (2) J60-P3A
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Figure 1. ABC Fure Helicopter.

“

Figuare 2. ABC Auxiliary Propulsion Helicopter.
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ROTOR SYSTEM

The ABC rotor system consists of two three-bladed counter-
rotating rotors classified as rigid or more precisely, stiff
inplane hingeless. The latter name refers to that categery of
rotors which have no mechanical hinges in the two bending
degrees of freedom and which have a first chordwise bending
natural frequency higher than one times the rotor speed. The
flapwise bending stiffness distribution is based on the
following design requirements:

(a) The advancing blade concept involves allowing
a large part of the rotor lift to be generated
in the advancing portion of the rotor disc in
high speed flight using conventional one-per-
rev cycle pitch. This requires a relatively
high flapwise frequency (or effective hinge
offset) in the first flapwise bending mogde.

{b) The distance between the upper and lower
rotors is minimized to reduce drag. This
requires sufficient stiffness to prevent the
blade tips from contacting in flight.

(c) The stiffness distribution must resuit in
sufficient bending fatigue strength in the
selected materials under the high vibratory
moments generated by the rigid rotor.

To meet the stiffness requirements at a minimum weight, the
rotor blades are tapered in airfoil thickness, the highest

taper occurring inboard. In addition, the airfoil chord
length 1is tapered linearly from tip to root to maximize the
performance of the rotor. Figure 3 shows spanwise distribu-

tions of the airfoil chord length and thickness ratio. The
rotor blades have an effective built-in twist of approximately
10 degrees which varies nonlinearly from tip to root as shown
in Figure 4.

The rotor radius 1is 216 inches and normal operating rotor
speed is 345 rpm, yielding a tip speed of 650 feet per second.

The primary structural member of the rotor blade is the spar
which provides most of the blade's flapwise stiffness require-
ments. The spar 1is constructed of 6-4 titanium alloy to
maximize the fatigue stress allowable for a given weight in a
metal structure. The hollow member, highly tapered in both
wall thickness and periphery, is fabricated from a thick-
walled extrusion which is machined both internally and
externally and then hot formed to the required elliptical
shape. The inboard end is round and threaded for attachment
to the pitch bearing assembly.
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